首页> 外文OA文献 >Modelling non-industrial private forest landowners’ strategic decision making by using logistic regression and neural networks: Case of predicting the choice of forest taxation basis.
【2h】

Modelling non-industrial private forest landowners’ strategic decision making by using logistic regression and neural networks: Case of predicting the choice of forest taxation basis.

机译:通过逻辑回归和神经网络对非工业私有林地主的战略决策建模:预测森林税基选择的案例。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, logistic regression and neural networks were used to predict non-industrial private forest (NIPF) landowners’ choice of forest taxation basis. The main frame of reference of the study was the Finnish capital taxation reform of 1993. As a consequence of the reform, landowners were required to choose whether to be taxed according to site-productivity or realized-income during the coming transition period of thirteen years. The most important factor affecting the landowners’ choice of taxation basis was the harvest rate during the transition period, i.e. the chosen timber management strategy. Furthermore, the estimated personal marginal tax rate and the intention to cut timber during next three years affected the choice. The descriptive landowner variables did not have any marked effect on the choice of forest taxation basis. On average, logistic regression predicted 71% of the choices correctly; the corresponding figure for neural networks was 63%. In both methods, the choice of site-productivity taxation was predicted more accurately than the choice of realized-income taxation. An increase in the number of model variables did not significantly improve the results of neural networks and logistic regression.
机译:在这项研究中,逻辑回归和神经网络被用来预测非工业私有林(NIPF)土地所有者选择森林税的依据。该研究的主要参考框架是1993年的芬兰资本税改革。改革的结果是,要求土地所有者在即将到来的十三年过渡期内选择根据站点生产力还是实际收入来征税。影响土地所有者选择税基的最重要因素是过渡时期的采伐率,即选择的木材管理策略。此外,估计的个人边际税率和未来三年砍伐木材的意愿影响了选择。描述性的土地所有者变量对森林税基的选择没有显着影响。平均而言,逻辑回归可以正确预测71%的选择;神经网络的相应数字为63%。在这两种方法中,对站点生产力税收选择的预测都比对实现收入税收的选择更为准确。模型变量数量的增加并未显着改善神经网络和逻辑回归的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号